日韩伦理网在线视频_李然然英语老师精品视频_中文字幕被夫的上司侵犯7天_色戒无删减版在线完整

CMOS與CCD的區別

2017-01-03 11:16 來源: 裝修保障網 作者:蜂蜜柚子 閱讀(

  攝像機知識入門-特點-分類篇:下面文章介紹了CCD與CMOS傳感器是被普遍采用的兩種圖像傳感器,兩者都是利用感光二極管(photodiode)進行光電轉換,而其主要差異是數字數據傳送的方式不同。

CMOS

  CMOS與CCD的區別

  CCD與CMOS傳感器是被普遍采用的兩種圖像傳感器,兩者都是利用感光二極管(photodiode)進行光電轉換,將圖像轉換為數字數據,而其主要差異是數字數據傳送的方式不同。

  CCD傳感器中每一行中每一個象素的電荷數據都會依次傳送到下一個象素中,由端部分輸出,再經由傳感器邊緣的放大器進行放大輸出;而在CMOS傳感器中,每個象素都會鄰接一個放大器及A/D轉換電路,用類似內存電路的方式將數據輸出。

  造成這種差異的原因在于:CCD的特殊工藝可保證數據在傳送時不會失真,因此各個象素的數據可匯聚至邊緣再進行放大處理;而CMOS工藝的數據在傳送距離較長時會產生噪聲,因此,必須先放大,再整合各個象素的數據。

  由于數據傳送方式不同,因此CCD與CMOS傳感器在效能與應用上也有諸多差異,這些差異包括:

  1. 靈敏度差異:

  由于CMOS傳感器的每個象素由四個晶體管與一個感光二極管構成(含放大器與A/D轉換電路),使得每個象素的感光區域遠小于象素本身的表面積,因此在象素尺寸相同的情況下,CMOS傳感器的靈敏度要低于CCD傳感器。

  2. 成本差異:

  由于CMOS傳感器采用一般半導體電路常用的CMOS工藝,可以輕易地將周邊電路(如AGC、CDS、Timing generator、或DSP等)集成到傳感器芯片中,因此可以節省外圍芯片的成本;除此之外,由于CCD采用電荷傳遞的方式傳送數據,只要其中有一個象素不能運行,就會導致一整排的數據不能傳送,因此控制CCD傳感器的成品率比CMOS傳感器困難許多,即使有經驗的廠商也很難在產品問世的半年內突破50%的水平,因此,CCD傳感器的成本會高于CMOS傳感器。

  3. 分辨率差異:

  CMOS傳感器的每個象素都比CCD傳感器復雜,其象素尺寸很難達到CCD傳感器的水平,因此,當比較相同尺寸的CCD與CMOS傳感器時,CCD傳感器的分辨率通常會優于CMOS傳感器的水平。例如,市面上CMOS傳感器可達到210萬象素的水平(OmniVision的 OV2610,2002年6月推出),其尺寸為1/2英寸,象素尺寸為4.25μm,但Sony在2002年12月推出了ICX452,其尺寸與 OV2610相差不多(1/1.8英寸),但分辨率卻能高達513萬象素,象素尺寸也只有2.78mm的水平。[1]

  4. 噪聲差異:

  由于CMOS傳感器的每個感光二極管都需搭配一個放大器,而放大器屬于模擬電路,很難讓每個放大器所得到的結果保持一致,因此與只有一個放大器放在芯片邊緣的CCD傳感器相比,CMOS傳感器的噪聲就會增加很多,影響圖像品質。

  5. 功耗差異:

  CMOS傳感器的圖像采集方式為主動式,感光二極管所產生的電荷會直接由晶體管放大輸出,但CCD傳感器為被動式采集,需外加電壓讓每個象素中的電荷移動,而此外加電壓通常需要達到12~18V;因此,CCD傳感器除了在電源管理電路設計上的難度更高之外(需外加 power IC),高驅動電壓更使其功耗遠高于CMOS傳感器的水平。舉例來說,OmniVision推出的OV7640(1/4英寸、VGA),在 30 fps的速度下運行,功耗僅為40mW;而致力于低功耗CCD傳感器的Sanyo公司推出的1/7英寸、CIF等級的產品,其功耗卻仍保持在90mW 以上。因此CCD發熱量比CMOS大,不能長時間在陽光下工作。[1]

  綜上所述,CCD傳感器在靈敏度、分辨率、噪聲控制等方面都優于CMOS傳感器,而CMOS傳感器則具有低成本、低功耗、以及高整合度的特點。不過,隨著CCD與CMOS傳感器技術的進步,兩者的差異有逐漸縮小的態勢,例如,CCD傳感器一直在功耗上作改進,以應用于移動通信市場(這方面的代表業者為Sanyo);CMOS傳感器則在改善分辨率與靈敏度方面的不足,以應用于更高端的圖像產品。

  主要CMOS廠商

  投入CMOS研發、生產的廠商較多,美國有30多家,歐洲7家,日本約8家,韓國1家,臺灣有8家。而居全球翹楚地位的廠商是Agilent(HP),其市場占有率51%、ST(VLSI Vision)占16%、Omni Vision占13%、現代占8%、Photobit約占5%,這五家合計市占率達93%。

  Sony

  Sony是全球CCD傳感器大廠,也是家投入12英寸晶圓、推出600萬象素CCD的公司,Sony約有30~40%的CCD傳感器供自有品牌產品使用,其它則賣給Canon、Sanyo、Casio、以及臺灣的新虹、普利爾、詮訊(與臺灣佳能合并)等廠商。

  Sony的產品技術藍圖顯示,2003年除了800萬象素的ICX 456外,并無其它微縮工藝的產品問世。產品尺寸將大致保持現有水平,取而代之的是強化攝影功能與支持progressive scan(連續式掃描),例如500萬象素的ICX455/465、330萬象素的ICX451/481、以及210萬象素的ICX461等,令高端產品也能達到30fps以上的數據傳送速率。

  高端產品的大部分市場仍被Sony占據,再加上市場仍處于供不應求的局面,公司并未急于做降低成本的動作,不過,一旦Sony的工藝(象素尺寸2.6~2.8mm)達到成熟階段(成品率超過50%),該公司勢必近一步將此工藝應用到其它產品上(目前仍只有1/1.8英寸、 500萬象素產品使用此工藝),屆時可能會有1/2.7英寸、400萬象素產品問世。

  OmniVision

  OmniVision成立于1995年(以下簡稱OV),2002年6月其它同業率先推出210萬象素的OV2610震驚市場,雖然目前采用此傳感器量產的產品并不多,但這已說明CMOS傳感器可以開始進入原本屬于CCD傳感器的中高端數碼相機市場; OV的數據顯示,目前已有天瀚、明、鴻友等臺灣商家開始采用該公司的OV2610。展望2003年,OV將在1季度~2季度之間推出330萬象素、1/2英寸的產品,采TSMC 0.18mm工藝生產,再次拓展CMOS傳感器的應用范圍。在移動電話市場上,CMOS模組的攝相模塊已經成為移動通訊應用的量產品。

  在低功耗產品方面,OV也在2002年12巒瞥雋薕V7640,可以在2.5V的環境下運行,為目前VGA產品中功耗的芯片。而在2003 年新規劃的產品方面,OV計劃在下半年推出130萬象素、1/4英寸,以及VGA、1/7英寸的產品,希望在CCD廠家推出低功耗的130萬素產品之前,先行搶占市場先機。

  Agilent

  Agilent主要的產品為第二代的CIF(352*288)HDCS-1020和第二代的VGA(640*480)HDCS-2020,主要應用在數碼相機 、行動電話、PDA、PC Camera等新興的資訊家電產品之中,此外Agilent在2000年另一成功策略是和Logitech與Microsoft這兩家公司策略聯盟,打入了光學鼠標產品領域,但是這是非常低階的CMOS產品,而且不是為了捕捉影像 ,所以在做影像感測器的全球統計時并未將此數量一并加入,但是此舉可看出Agilent以CMOS技術為基礎進軍光學元件的規劃意圖。

  Photobit

  Photobit在2000年獲得較大成功。2001年Photobit率先研發出PB-0330產品型號的CMOS圖像傳感器,此產品特色具備單一晶片邏輯轉數位的變頻器,它是第二代1/4寸的VGA(640 x 480),同時也推出PB-0111產品型號的CMOS影像感測器,是第二代1/5寸的CIF(352 x 288)。Photobit推出這兩種產品主要針對數碼相機和PC Camera這些近年來蓬勃發展的數位化產品,和OmniVision CIF(352 x 288)定位在行動電話市場上有所區隔,其推出CIF(352 x 288)和VGA(640 x 480)這兩種不同解析程度的影像感測器,行銷范圍意圖含蓋低階和中高階市場。

  其它公司

  特色的是Sanyo,該公司致力于改善CCD 傳感器的功耗,以相機電話為主要應用目標,之前J-Phone率先推出的Sharp J-SHxx系列便是采用Sanyo的CIF級CCD傳感器,Sharp、Toshiba等手機廠家也計劃在02年4季度~03年1季度之間陸續引入 Sanyo的VGA產品。Matsushita、Sharp的產品規劃與Sony相差不多,主要差異在于Matsushita準備推出更小的400萬象素 (1/2.7英寸)與130萬象素(1/4英寸)產品。

  發展前景

  專家們認為,21世紀初全球CMOS圖像傳感器市場將在PC攝像機、移動通信市場、數碼相機、攝像機市場市場等領域獲得大幅度增長,在未來的幾年時間內,在130 萬像素至200萬像素之下的產品中,將開始以CMOS傳感器為主流。以小型化和低功耗CMOS圖像傳感器為核心的攝像機正在成為消費類產品的主流,上述領域將為圖像傳感器市場帶來巨大發展[2]。

  業界動態

  2009年8月28日,秋季數碼影像新品發布會在北京隆重舉行,宣布在三條產品線推出共十款數碼影像新品。其中 DSC-TX1和DSC-WX1應用了新型影像傳感器Exmor R CMOS影像傳感器,它采用先進的背照射技術,其對光線的靈敏度比傳統的CMOS影像傳感器提高了約2倍,大幅提升了拍攝畫質,得到明亮畫面的同時更好地降噪,使得在低照度條件下仍然可以獲得細節豐富的照片,造就卓越的夜間拍攝性能。該傳感器具備1020萬有效像素,支持從ISO100~ISO3200的感光度范圍,并支持720p的高畫質動態影像視頻拍攝。性能強大的Exmor R MOS配合BIONZ影像處理器,可以快速準確地處理海量信息,使DSC TX1和WX1具備了手持夜景模式、全景拍攝、動作防抖和每秒約10張。

  電子公司提高CMOS傳感器靈敏度的背面照射(BSI:backside illumination)技術達到了實用化水平,2010年將批量生產產品。三家大型CMOS傳感器公司均將在2010年開始量產采用背面照射技術的 CMOS傳感器(BSI型CMOS傳感器)。三星在工藝技術方面將采用適于降低成本的方法。之所以著手從事BSI技術,是因為通過提高靈敏度能夠維持相同的靈敏度同時縮小像素間距。據該公司估算,1.4μm間距的BSI型能夠獲得與基于現有技術的FSI(Front Side Illumination)型1.75μm間距產品相同的畫質。同一像素間距,BSI型的靈敏度可以比FIS型高30%。三星為在今后量產1.1μm間距產品等間距更小的元件,將增加BSI型的比例。該公司計劃把2010年首批量產的BSI型CMOS傳感器做成支持1460萬像素和30幀/秒的元件。預計將配備于數碼相機、數碼攝像機及高端手機等設備上

  擴展光譜靈敏度和提高分辨率是大趨勢

  在現代CMOS圖像傳感器中,一個重要的發展趨勢是其光譜靈敏度擴展到了近紅外區NIR(至約1,100nm的波長)。配備了IM-001 CMOS圖像傳感器的汽車應用將改善霧穿透力和夜視能力。由于工業圖像捕獲技術開始運用更多波長位于NIR之中的光源,而且生物技術也在利用該光譜區域中的有趣現象,因此,新開發的IBIS 5-AE-1300傳感器具有700~900nm的NIR靈敏度。

  在面向消費應用的圖像捕獲技術中,另一個發展趨勢是繼續提高分辨率。到2005年年中,70%左右的手機相機已具有VGA格式分辨率(640×480像素);但隨后的2006年,幾百萬像素的傳感器就將占領50%的市場份額,而到2008年,其市場占有率預計將進一步攀升至90%以上。為此,賽普拉斯公司開發了一種用于蜂窩電話的300萬像素圖像傳感器,該產品采用了Autobrite技術,可進行12位模擬/數字轉換,并提供了72dB的寬廣動態范圍,而目前市面上的10位模擬/數字轉換器的動態范圍僅為60dB。逐行掃描模式中的幀速率高達30幀/秒,因而可錄制實況視頻節目。

  在工業和商業領域中,這種發展趨勢也很明顯:賽普拉斯已推出一款用于Kodak數碼相機的1,300萬像素/35mm圖像傳感器,另外,660萬像素的IBIS 4-6600傳感器正在一種面向弱視人群的自動閱讀輔助裝置中證明自己的卓越品質--它可在一幅完整的標準A4頁面上提供出色的分辨率。

  憑借技術實現系統集成 由于蜂窩電話、數碼相機、MP3播放機和PDA等傳統分離型功能設備的加速數字融合(即成為一部緊湊的消費型電子產品),導致人們越來越希望至少具有部分自主性的子系統能夠在一部設備中提供極為寬泛的功能。這種趨勢還將對專業測量技術產生影響:利用包含一個數碼相機、PDA用戶接口和WLAN聯網能力的便攜式檢驗工具,光測試和監視的應用范圍將得到有效的拓展。作為一種平臺技術,CMOS符合這一發展潮流:CCD圖像轉換器仍然需要采用外部邏輯電路來實現控制和模擬/數字轉換功能,而CMOS標準邏輯器件則能夠把傳感器、控制器、轉換器和評估邏輯電路等全部集成到一塊芯片之中。

  一個典型的例子如專門針對要求苛刻的消費應用而制作的CYIWCSC1300AA芯片的圖像捕獲電路。它基于130萬像素圖像傳感器CYIWOSC1300AA 和一個用于提供誤差插補、黑電平調整、透鏡校正、信號互串校正、彩色馬賽克修補、彩色校正、自動曝光、噪聲抑制、和γ校正等等諸多功能的附加信號處理器。集成更多的系統功能(一直到自主型光電傳感器系統)是可行的,這主要取決于諸如市場容量和開發成本等經濟目標和限制因素。

  IMS Research公司的市場分析家John Morse指出:“工業圖像處理市場的變化非??欤还馐窃诩夹g層面上,而且還涉及近期發生的制造商合并事件。我們認為這種趨勢還將繼續下去?!惫嫒绱耍敲催@同樣適用于賽普拉斯公司:通過收購MIT(美國麻省理工學院)于1999年成立的SMal Camera Technologies公司,賽普拉斯已將其業務觸角延伸到了消費和汽車領域;而兼并FillFactory(這是一家于1999年從總部位于比利時Leuven的歐洲微電子和納米技術研究中心IMEC抽資脫離而成的公司)則使賽普拉斯進一步躋身工業領域。

  CMOS圖像傳感器市場正在蓬勃發展之中,即將成為一個大規模市場。它在很大程度上仍然依賴于客戶專用設計來滿足規格和系統集成方面的一組定制要求。不過,它將越來越多地提供通用的標準解決方案。分辨率、幀速率和靈敏度的提高以及成本的下降正使其應用領域不斷地擴大。要的一環。

  像素結構

  CMOS傳感器按為像素結構分被動式與主動式兩種。

  被動式像素結構

  被動式像素結構(Passive Pixel Sensor.簡稱PPS),又叫無源式。它由一個反向偏置的光敏二極管和一個開關管構成。光敏二極管本質上是一個由P型半導體和N型半導體組成的PN結,它可等效為一個反向偏置的二極管和一個MOS電容并聯。當開關管開啟時,光敏二極管與垂直的列線(Column bus)連通。位于列線末端的電荷積分放大器讀出電路(Charge integrating amplifier)保持列線電壓為一常數,當光敏二極管存貯的信號電荷被讀出時,其電壓被復位到列線電壓水平,與此同時,與光信號成正比的電荷由電荷積分放大器轉換為電荷輸出。

  主動式像素結構

  主動式像素結構(Active Pixel Sensor.簡稱APS),又叫有源式,如圖2所示。 幾乎在CMOS PPS像素結構發明的同時,人們很快認識到在像素內引入緩沖器或放大器可以改善像素的性能,在CMOS APS中每一像素內都有自己的放大器。集成在表面的放大晶體管減少了像素元件的有效表面積,降低了“封裝密度”,使40%~50%的入射光被反射。這種傳感器的另一個問題是,如何使傳感器的多通道放大器之間有較好的匹配,這可以通過降低殘余水平的固定圖形噪聲較好地實現。由于CMOS APS像素內的每個放大器僅在此讀出期間被激發,所以CMOS APS的功耗比CCD圖像傳感器的還小。

  填充因數與量子效率

  這填充因數(Fill Factor),又叫充滿因數,它指像素上的光電二極管相對于像素表面的大小。量子效率(Quantun efficiency)是指一個像素被光子撞擊后實際和理論值電子數的歸一化值。被動式像素結構的電荷填充因數通常可達到70%,因此量子效率高。但光電二極管積累的電荷通常很小,很易受到雜波干擾。再說像素內部又沒有信號放大器,只依賴垂直總線終端放大器,因而讀出的信號雜波很大,其S/N比低,更因不同位置的像素雜波大小不一樣(固定圖形噪波FPN)而影響整個圖像的質量。而主動性像素結構與被動式相比,它在每個像素處增加了一個放大器,可以將光電二極管積累的電荷轉換成電壓進行放大,大大提高了S/N比,從而提高了傳輸過程中抗干擾的能力。但由于放大器占據了過多的像素面積,因而它的填充因數相對較低,一般在25%-35%之間。

  CMOS(Complementary Metal-Oxide-Semiconductor),中文學名為互補金屬氧化物半導體,它本是計算機系統內一種重要的芯片,保存了系統引導基本的資料。CMOS的制造技術和一般計算機芯片沒什么差別,主要是利用硅和鍺這兩種元素所做成的半導體,使其在CMOS上共存著帶N(帶-電) 和 P(帶+電)級的半導體,這兩個互補效應所產生的電流即可被處理芯片紀錄和解讀成影像。后來發現CMOS經過加工也可以作為數碼攝影中的圖像傳感器,CMOS傳感器也可細分為被動式像素傳感器(Passive Pixel Sensor CMOS)與主動式像素傳感器(Active Pixel Sensor CMOS)

  CMOS傳感器介紹

  當今的CMOS圖像轉換技術不僅服務于“傳統的”工業圖像處理,而且還憑借其卓越的性能和靈活性而被日益廣泛的新穎消費應用所接納。此外,它還能確保汽車駕駛時的高安全性和舒適性。初,CMOS圖像傳感器被應用于工業圖像處理;在那些旨在提高生產率、質量和生產工藝經濟性的全新自動化解決方案中,它至今仍然是至關重要的一環。

  據市場研究公司IMS Research的預測,在未來的幾年中,歐洲工業圖像處理市場的年成長率將達到6%,其中,在相機中集成了軟件功能的智能型解決方案的市場份額將不斷擴大。在德國,據其全國工具機供應商協會VDMA提供的數據,2004年的圖像處理市場增長率達到了14%。市場調研公司In-Stat/MDR亦指出,單就圖像傳感器的次級市場而言,其年成長率將高達30%以上,而且這種情況將持續到2008年。為重要的是:CMOS傳感器的成長速度將達到CCD傳感器的七倍,照相手機和數碼相機的迅速普及是這種需求的主要推動因素。

  顯然,人們如此看好CMOS圖像轉換器的成長前景是基于這樣一個事實,即:與壟斷該領域長達30多年的CCD技術相比,它能夠更好地滿足用戶對各種應用中新型圖像傳感器不斷提升的品質要求,如更加靈活的圖像捕獲、更高的靈敏度、更寬的動態范圍、更高的分辨率、更低的功耗以及更加優良的系統集成等。此外,CMOS圖像轉換器還造就了一些迄今為止尚不能以經濟的方式來實現的新穎應用。另外,還有一些有利于CMOS傳感器的“軟”標準在起作用,包括:應用支持、抗輻射性、快門類型、開窗口和光譜覆蓋率等。不過,這種區別稍帶幾分任意性,因為這些標準的重要程度將由于應用的不同(消費、工業或汽車)而發生變化。

  細節表現中所面臨的難題

  就像我們從模擬攝影所獲知的那樣,拍攝一幅完整場景的照片是一件相當普通的事情,照相手機同樣如此。但是,對于工業或汽車應用來說,情況就大不一樣了:有些場合并不需要很高的全幀數據速率。比如,在監控攝像機中,只要能夠發現一幅場景中出現的變化(因為這種變化可能預示著某種可疑情況),那么分辨率低一點也是完全可以接受的。在此基礎之上才需要借助全分辨率來采集更多的細節信息。跟著發生的動作將只在攝像機視場的某一部分當中進行播放,而且,在所捕獲的場景中,只有這一部分才是監控人員所關注的。

  對于只提供全幀圖像的CCD圖像傳感器而言,只有采用一個分離的評估電路才能夠提供兩個觀測角度,這意味著處理時間和成本的增加。然而,CMOS圖像傳感器的工作原理則與RAM相似,所有的存儲位均可單獨讀出。CMOS傳感器的二次采樣雖然提供了較低的分辨率,但是幀速率較高;而開窗口則允許隨機選擇一塊感興趣的區域。

  CMOS傳感器優勢

  CMOS傳感器獲得廣泛應用的一個前提是其所擁有的較高靈敏度、較短曝光時間和日漸縮小的像素尺寸。像素靈敏度的一個衡量尺度是填充因子(感光面積與整個像素面積之比)與量子效率(由轟擊屏幕的光子所生成的電子的數量)的乘積。CCD傳感器因其技術的固有特性而擁有一個很大的填充因子。而在CMOS圖像傳感器中,為了實現堪與CCD轉換器相媲美的噪聲指標和靈敏度水平,人們給CMOS圖像傳感器裝配上了有源像素傳感器(APS),并且導致填充因子降低,原因是像素表面相當大的一部分面積被放大器晶體管所占用,留給光電二極管的可用空間較小。所以,當今CMOS傳感器的一個重要的開發目標就是擴大填充因子。賽普拉斯(FillFactory)通過其獲得專利授權的一項技術,可以大幅度地提高填充因子,這種技術可以把一顆標準CMOS硅芯片的一部分面積變為一塊感光區域。

  另外,對于一個典型的工業用圖象傳感器而言,由于許多場景的拍攝都是在照明條件很差的情況下進行的,因此擁有較大的動態范圍將是十分有益的。CMOS圖像傳感器通過多斜率操作實現了這一目標:轉換曲線由傾度不同的直線部分所組成,它們共同形成了一個非線性特征曲線。因此,一幅場景的黑暗部分有可能占據集成模擬-數字轉換器轉換范圍的很大一部分:轉換特征曲線在這里為陡峭,以實現高靈敏度和對比度。特征曲線上半部分的平整化將在圖像的明亮部分捕獲幾個數量級的過度曝光,并以一個更加細致的標度來表現它們。采用多斜率的方式來運作LUPA-4000將使高達90dB的光動態范圍與一個10位A/D轉換范圍相匹配。

  具有VGA分辨率的IM-001系列CMOS圖像傳感器在此基礎上更進一步;它們是專為汽車應用而設計的。其像素由光電二極管組成,可提供高達120dB的自適應動態范圍。面向汽車應用的ACM 100相機模塊就采用了這些傳感器,這種相機模塊據稱是同類產品中率先面市的全集成化相機解決方案:該視覺解決方案被看作是面向駕駛者保護、防撞、夜視支持和輪胎跟蹤導向的未來汽車安全系統的關鍵元件。

  此外,對于獨立于電網的便攜式應用而言,以低功耗特性而著稱的CMOS技術還具有一個明顯的優勢:CMOS圖像傳感器是針對5V和3.3V電源電壓而設計的。而CCD芯片則需要大約12V的電源電壓,因此不得不采用一個電壓轉換器,從而導致功耗增加。在總功耗方面,把控制和系統功能集成到CMOS傳感器中將帶來另一個好處:它去除了與其他半導體元件的所有外部連接線。其高功耗的驅動器如今已遭棄用,這是因為在芯片內部進行通信所消耗的能量要比通過PCB或襯底的外部實現方式低得多。

聲明:以上文章或轉稿中文字或圖片涉及版權等問題,請作者在及時聯系本站,我們會盡快和您對接處理。
標簽: CMOS CCD

熱門攻略

換一換 換一換

已有6255915位業主享受服務

2024-12-26 21:01:41 104.221.188.226 m.hirusagari-roma.com 0 m.hirusagari-roma.com:20101 m.hirusagari-roma.com localhost {ISHTML}